Gao Fei
University of Hong Kong, China
Title: iRGD modified lipid-polymer hybrid nanoparticles loaded isoliquiritigenin to enhance anti-breast cancer effect and targeting ability
Biography
Biography: Gao Fei
Abstract
To improve the poor delivery of Isoliquiritigenin (ISL), a natural anti-breast cancer compound, is essential to promote therapeutic outcome. Herein, a tumor-targeting lipid-polymer hybrid nanoparticle (NP) system modified by tumor-homing iRGD peptides has been developed to enhance ISL anti-breast cancer efficacy. The hybrid NPs were prepared by a modified single-step nanoprecipitation method to encapsulate ISL. By the preparation aspect, iRGD peptides were anchored on the surface by a post-insertion method (ISL-iRGD NPs). The stable lipid-polymer structure of ISL-iRGD NPs with high encapsulation and loading efficiency has been confirmed. By the pharmacological research aspect, the enhanced anti-breast cancer activity of ISL-iRGD NPs was conducted both in vitro and in vivo. Compared to free ISL and non-iRGD modified counterpart, ISL-iRGD NPs showed higher cytotoxicity and cell apoptosis against three types of breast cancer cells. In addition, it would attribute to the higher cellular accumulation mediated by the iRGD-integrin recognition and nano-scale effect. More importantly, based on the active tumor tissue accumulation by iRGD peptides and the prolonged in vivo circulation by the stealth nano-structure, ISL-iRGD NPs displayed higher tumor growth inhibition efficiency in 4T-1 bearing breast tumor mice models. All in all, the constructed iRGD modified lipid-polymer hybrid NPs would provide a promising drug delivery strategy to improve ISL anti-breast cancer efficacy.